LA-UR-18-25478

Approved for public release; distribution is unlimited.

Title:
Author(s):

Intended for:

Issued:

Malicious Docs: Malware Analysis Day 7
Pearce, Lauren

Presentation for 2 week malware analysis class

2018-06-21

VA

.
s LonLuamos

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Malicious Docs

Malware Analysis Day 7

Obfuscated Javascript

Why?

 Exploit kits (or other malware) looking for vulnerable browsers to
provide a way in.
* Web Drive By
* Watering Hole
* Phishing

* Javascript tagging along on other content

e PDF documents
* Flash files

Options for Analysis

e Static analysis, reviewing the obfuscated code by hand

* Dynamic analysis, letting the code run in a protected sandbox so it
can deobfuscate itself

3 Steps

1. Clean-up the Javascript in question to make it easier to understand,
and to enable better setting of breakpoints

2. Modify the Javascript to run in an interpreter (Firefox, Chrome, or
command-line versions of the browser interpreter such as
Spidermonkey or V8)

3. Run the code, modifying statements to include print statements or
setting breakpoints

Formatting the JS

* Format it to look pretty. | use PDFStreamDumper since it’s already in
my VM, but there are other options. Here’s how to use
PDFStreamDumper:

1. Copy the js into your clipboard

Open PDFStream Dumper, select "JavaScriptUI" from the top toolbar

Paste the js into the text editor and select all

Click "Format_Javascript"

Copy and paste your formatted javascript into a new file.

s W

Eval

 Eval is a function that evaluates a string as if it is code, then returns
the results. This is useful to us, because we often want to see the
code that is being passed into eval.

* Two basic methods to see what’s being passed to eval
* Debugger — browser based or other.
* Print statements, console.login js

* Figuring out what’s going to eval is rarely ALL that you have to do, but
it’s a good step anytime you see an eval call.

Console.Log

* To use this method, we have to first turn our js into html, then add in
a print statement, and lastly run the code in an interpreter.

1. Add <html>" and <script>" tags to the beginning of the code and
corrosponding end tags to the end.

Replace the eval statement with "console.log"
Save as a .html

Open your file in Firefox
In firefox, go to Menu --> Developer --> Web Console
In the pane that opens, you will see either error code or deobfuscated code

o Uk wWwnN

Demo

00 _jsexample

Malicious Office Docs

Office Documents

* Allow scripting via VBA and are capable of interacting with the
windows OS

* Major vector of infection

Office File Formats

* Binary file format (doc, ppt, xls, etc.)

e Data within the file is stored in one or more streams, which contain data and
necessary metadata.

* OpenXML file format (docx, pptx, xlsx, etc.)

* Follow the OpenXML standard. Can be parsed by anything capable of parsing
XML

 The XML is stored in compressed archives and must be decompressed. 7z
works.

* VBA macros typically stored in binary OLE file called vbaProject.bin

VBA

* Visual Basic for Applications — uses same runtime library and syntax
as VB, but will only function within the hosting application.

* VBA can be used to inject shellcode, interact with Windows OS
resources, and to interact with web resources to pull down malware.

Tools

e OfficeMalScanner

* A Windows command-line tool for parsing and analyzing binary and xml
Office formats. It can find, identify and extract shellcode, embedded OLE
streams, PE files, or non-standard functionality within Office documents.

* oletools
* A set of python tools for interacting with OLE streams

* Included in the REMnux VM — explore what’s available in /opt/remnux-
oletools

OfficeMalScanner

* Usage: OfficeMalScanner <file> <scan | info | inflate> <brute>
<debug>

* Options:
* scan - scans for shellcode and encrypted PE-files
* info - dumps OLE structures and saves VB-Macro code
* inflate - decompresses MS 2007 docs into a temp dir

» Switches: (only enabled if "scan" option was selected)

* brute - brute force search for encrypted stuff
* debug - prints out disassembly resp hexoutput if a heuristic was found

OfficeMalScanner

C:“Reversing“0ff iceMalScanner>officemalscanner HBY14671IE_doc inflate

[#] INFLATE mode selected

[#]1 Opening file HRB7146911E.doc

[#] Filesize is 47441 (Bxh?5%1> Butes

[#]1 Microsoft Office Open HML Format document detected.

Found 15 files in this archive

1583 Butes at Offzet BxBUOOOOOH
at Offzet Ox000003c8
1871 Buytes at Offzet UxUUUOBGeB
at Offzet BxHAAAA?56

at Offzet UxUD0000eBd

27313 Bytes at Offzet BxBAAAZ253d

wvords/_rels s vbaProject.bin.rels 277 Butes at Offzet UxUU007021
vord theme-themel .xml 7843 Butes at Offzet AxHABA?11c
wvordsuvbaData.xml 1749 Butes at Offzet Ux00009762
wvordssettings.xml 7768 Butes at Offzet AxHABA7978
docPropssapp.xml 731 Buytes at Offzset UxB000al8e
wvordsstuyles.xml 28883 Butes at Offzet AxH0BAa447
636 Butes at Offzset Ox0000afc8
1255 Buytes at Offzet AxBAAAh24hb

484 Buytes at Offzet OxB00BL43a

[Content_Tuvpesl.xml
_rels/ . rels 598 Buytes
word/_rels/document .xml.rels
vorddocument . xml 4874 Buytes
14336 Butes

C:sReversing“Off iceMalScanner>officemalscanner vhaproject.bhin info

[#]1 INFO mode selected

[#]1 Opening file vhaproject.hin

[#] Filesize is 14336 <8x380B> Buytes

[#]1 M Office OLEZ Compound Format document detected

UB—HMACRO CODE WAE FOUND INSIDE THIS FILE?
The decompressed Macro code was stored here:

Content was decompressed to CG:sUsers~TRACER™i-AppData“Local“Temp“DecompressedMs0fficeDocument.

Found at least 1 ".bin" file in the MS0ffice document container.
Try to scan it manwally with SCAN+BRUTE and INFO mode.

olevba

remnux@remnux:~/Desktop$ olevba.py XB714691IE.doc

olevba 0.27 - http://decalage.info/python/oletools
Flags Filename
OpX:MASI--- XB714691IE.doc

(Flags: OpX=OpenXML, XML=Word20Q03XML, MHT=MHTML, M=Macros,
strings, B=Base64 strings, D=Dridex strings, ?=Unknown)

FILE: XB714691IE.doc

Type: OpenXML

VBA MACRO ThisDocument.cls

in file: word/vbaProject.bin - OLE stream: u'VBA/ThisDocum

Sub Auto_Open()
h

End Sub
Sub h()
Dim MY_FILENDIR, MY_FILEDIR, MY_FILDIR
MY_FILEN = "ntusersc.psl"
MY_FILE = "ntusersss.bat"
MY_FIL = "ntuserskk.vbs"
MY_FILENDIR = ActiveDocument.Path + "\ntusersc.psi"

AutoExec
AutoExec
AutoExec
Suspicious
suspicious

sSuspicious
sSuspicious

Suspicious
Suspicious

Suspicious
Suspicious

Suspicious
Suspicious
Suspicious
I0C
I0C
I0C
I0C
I0C

IoC
IoC

AutoOpen
Auto_Open
workbook_Open
Open

Chr

CreateObject
Shell

wScript.Shell
Run

PowerShell
New-Object
System.Net.WebClient
DownloadFile

Output
Print #

http://162.243.234.1
67:8080/gr/4.exe'
162.243.234.167
1.1.2.2

ntusersc.psi
ntusersss.bat
ntuserskk.vbs

4.exe

Runs when the wWord document is opened
Runs when the Excel Workbook is opened
Runs when the Excel Workbook is opened
May open a file

May attempt to obfuscate specific
strings
May create
May run an
command
May run an
command
May run an
command
May run PowerShell commands

May download files from the Internet
using PowerShell

May download files from the Internet
using PowerShell

May write to a file (if combined with
Open)

May write to a file (if combined with
Open)

URL

an OLE object
executable file or a system

executable file or a system

executable file or a system

IPv4 address
IPv4 address
Executable file
Executable file
Executable file
Executable file

name
name
name
name

Demo

OfficeMalScanner and oleTools

Malicious PDFs

PDFs and Malware

* You do NOT need to have a complete understanding of the PDF
format to understand how malware uses a PDF.

 The PDF documentation is well over 700 pages...
* What is a PDF?

e A binary (most common) or ascii file written in a specific format. That format
can be rendered as a document by a PDF reader.
* How can malware use a PDF?

e Some program (typically adobe reader) must interpret the data provided in
the PDF file to present the user with a well formatted document to look at.
Vulnerabilities in that program can be exploited by a well crafted PDF.

PDF Format

* Indirect Objects

 Have an index number, a version number, and content.

* Content is between the keywords obj and endobj

* Can refer to other indirect objects by using their index
and reference number
* 50R <- Reference to object 5 version 0

* Logical Structure

* References between indirect objects form a tree — the
logical structure of a PDF.

* The root element is identified by a /Root tag

* Physical structure is the order the objects occur in the
document — completely different.

Examples from Didier Stevens’ “Malicious PDF Analysis Ebook”

5 0 obj

PDF Format

e Stream Objects

* Atype of indirect object that contains data between the keywords stream and
endstream.
e Often compressed — PDFs refer to compression algorithms as filters.
* A stream can be compressed by more than one filter.

e

5 0 cbj<</Subtype/TypelC/Length 54l16/Filter/FlateDecode>>stream
HL | TIT#WEY | d&"FI#ALNFWH#AC

endstream
endobi

Example from Didier Stevens’ “Malicious PDF Analysis Ebook”

PDF Format - Content

* Static:
e Text blocks and styles
e Character encodings and font selection
* Multimedia support instructions

* Dynamic:
 Embedded JavaScript
* Dynamic action triggers (e.g., "On Open")

* Interaction with network resources (e.g., retrieving information from a web
resource by URL)

Dictionary Entries

» /<keyword> - The key to a dictionary that instructs the PDF reader to
perform some action. These are often referred to as “tags”.

* /OpenAction means to perform the action in the specified stream.
* Frequently used to execute javascript

1 0 obj

<<
/Type /Catalog
fOutlines 2 0 R
/Pages 3 0 R
/OpenAction 7 0 R

=

endokbj

Tags of Interest

* /OpenAction and /AA: specifies a script or action to take place
automatically

 /Names, /AcroForm, /Action: can specify or launch scripts
 /JavaScript: JavaScript to run

e /Launch: launches a program or document

* /URI: access a resource by URL

e /SubmitForm and /GoToR: send data to a specified URI
 /RichMedia: embed Flash content in a PDF

» /ObjStm: an object stream which can be used to hide objects

PDF Stream Dumper

S8 PDFStreamDumper - ht FileSize: i

ime: 0.156 seconds . 4 = E‘Elg
-

Load Exploits Scan Javascript UI Unescape Selection Manual_Escapes Update Current_Strearn Goto_Object Search_For Find/Replace Tools Help Videos
21 Objects <
4 HLen: Oxlé
2 HLen: 0OxZD jT}'pE .,o‘Catalcg
3 Hlen: 0x30 /Version /1.4
5 0xl&6-0x7ZB /Pages 2 0 R
& HLen: 0x3F /OpenBction 3 0 R i g-‘
7 OxSBl-0xA5D jAcrcForm 23 0 R PDFStreamDumper
8 HLen: 0x8 s
5 HLen: 0xZ5
10 OxREB-0xBZIC))
11 HLen: 0x7 Gl Red: Headers with Javascript tag
12 HLen: Oxl2 W' Elue: Object Streams
1% HLen: 0xé& - - -
1% Mo oae Green: Headers with /Launch or /Action or /Openfction or JAA
15 HLen- 033D Purple: Headers with /EmbeddedFiles
16 HLen: 0xE7 Orange: Unsupported Filters
Yellow: TTF Fonts
18 HLen: 0x3 .
2 Hoien. OeF Pink: XML Data
0 HLen: OxZZ4
| |
l]
I| i
(]
Text | HexDump | Scream Detailsl | |
|
|
1l Decompression Errors |
stream § 17 org sz = (0x58) |
| i
(
|
H Errors |Sea:r:ch| Debug (2) |
Shell | PDF Path IC:\Users\Traoer Fire\Desktop), ,samplel .pdf | Load | BAbort |
Streams:5 | JS: 1 | Embeds: 0 | Pages: 0 | TTF: 1 | Usp: o flash: 0 UnkFlt: 1 | Action: 1 | PRC: O y

PDF Stream Dumper

Load Exploits_Scan

Javascript_UI

=8 POFstreamDumper - _|F._-.r;'é-.'.'.:-.'...ﬂr‘.'..-ml-Ill.—n'-.-

Unescape_Selection

ime: 0.156 seconds

Manual_Escapes Update_Current_Stream Goto_Object Search_For Find/Replace Tools Help_Videos

21 Objects

HLen:
HLen:
Hlen:

HLen:

HLen:
HLen:

W00] @y 07 G R |

o
[

HLen:
HlLen:
HLen:
HLen:
HLen:
HLen:

e e e e
[R T I

HLen:
HLen:

=]
W

0 HLen:

Oxlae-

Ox3B1-

Oxle
0xzD
0x30
0x7EB
Ox5F
OxAESD
0xB
0nzs

O0xBREB-0xB2ZC

0x7
Oxlz
Oxe
Oxg
Ox33D
OxFE7

0x10C3-0x2DF7

0x5
OxF

Oxzz4

Object Index:

Object Start Offset:
Object End Offset:
Stream Start Offset:
Stream End Offset:
Compressed Size:
Compressed CRC:
DecompFilters:
Unsupported Filters?:

17

0x1011 (4113)
O0x106E (42086)
Ox105C (4188)
O0x105C (4188)
0x0 (0)

0x0
FlateDecode
False

Decompress Error: FlateDecode Decompression Error. Input data length = 0x0
Detected Type:.unk
Message: FlateDecode Decompression Error. Input data length = 0x0
HeaderCRC: 2AEDIE&T
Header:
<<
/Lengthl 35165
JFilter [/FlateDecode]
/Length 18 0 R
>
Text | HexDump |

1 Decompression Errors

stream £ 17 org sz = (0x58)

odfid

remnux@remnux:~/Desktop$ pdfid saml.pdf
PDFiD 0.2.1 saml.pdf

PDF Header: %PDF-1.4

obj 21

endobj 21

stream
endstream
xref

trailer
startxref
/Page
/Encrypt
/0bjStm

/JS
/Javascript
/AA
/0penAction
/AcroForm
/JBIG2Decode
/RichMedia
/Launch
/EmbeddedFile
/XFA

/Colors > 2A24

ol _NoNoNoNoN I ol i ool i il o Re]

peepdf

remnux@remnux:~/Desktop$ peepdf saml.pdf -i

e Can pass it arguments to get a File: san.pdf
. . . MDS:.27eea8deecf2d07217e76a78098d890f
qU|Ck OverV|eW’ Or‘ drop Into an gié\: ggggg4giig§890b88981(:b47404el4e?873d4746
interpreter to ask more ‘E’iﬁiii?'ng;‘F 1
advanced questions. Encryptea; False
. . Objectsi 21
e Already installed in remnux streans; 6
d|StrO. Errcnfs: 1
Version 0:
Catalog: 1
Info: 4

Objects (21): [1, 2, 3, 4, 5, 6, 7, 8, €
Streams (6): [24, 5, 7, 10, 17, 17]

Encoded (4): [5, 7, 17, 17]
Suspicious elements:

/AcroForm: [1]

/0penAction: [1]

/XFA: [23]

/3S: [3]

/JavaScript: [3]

peepdf

PPDF> object 3

<< /Type /Action
/S /JavaScript
/JS 7 @ R >>

Demo

Resources for More:

* Malicious Document Cheat Sheet: https://zeltser.com/analyzing-malicious-
documents/

* oletools: https://github.com/decalage2/oletools

 officemalscanner: https://medium.com/@mbromileyDFIR/malware-
monday-officemalscanner-b1e5f6417df6

* peepdf: https://zeltser.com/peepdf-malicious-pdf-analysis/

* PDF Stream Dumper: https://zeltser.com/pdf-stream-dumper-malicious-
file-analysis/
* PDF Overview: https://blog.didierstevens.com/2010/09/26/free-malicious-
pdf-analysis-e-book/
* Pure Gold.

Lab Work

 Malicious Word Document Lab
 Malicious PDF Lab

* Encompasses malicious JS

e LAST AFTERNOON to work on Obfuscated Malware Lab!

Sources/Questions/Comments/Corrections

* Note that animations (mostly highlighting or revealing code on click)
are extremely useful when teaching from this slide deck. Email me for
slide originals.

e Questions/Comments/Corrections to Lauren Pearce —
Laurenp@Ilanl.gov

